Learning to Do

Supervised Learning: given data, predict labels

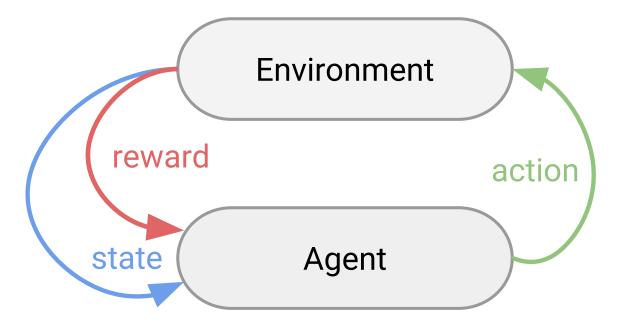
Unsupervised Learning: given **data**, learn about that **data**

Reinforcement Learning: given **data**, choose **action** to maximize expected **long-term reward**

Boston Dynamics

10#

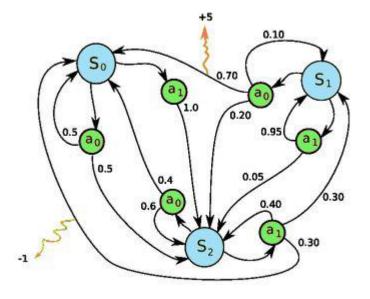
100

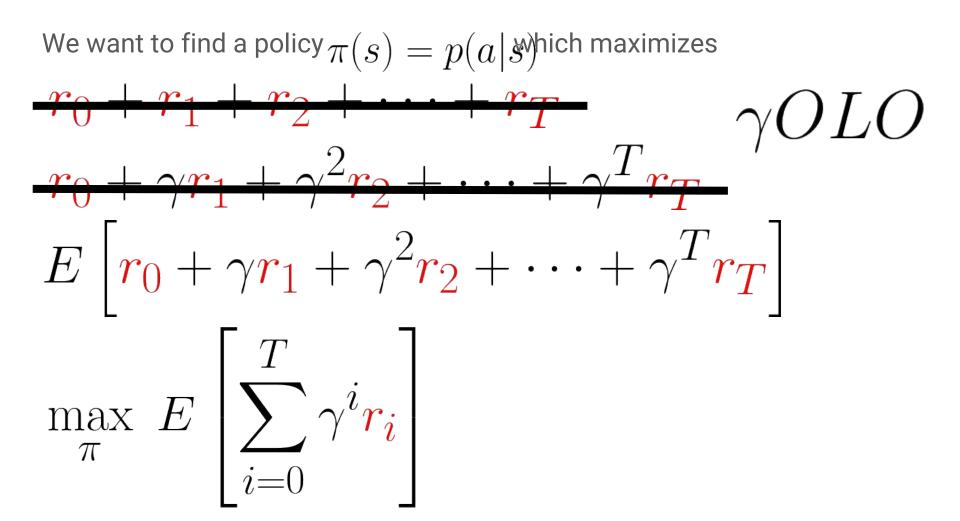


Episode: sequence of states and actions

 $s_0, a_0, r_0, s_1, a_1, r_1, \ldots, s_{T-1}, a_{T-1}, r_{T-1}, s_T, r_T$

Transition function: $P(s_{t+1}, r_t \mid s_t, a_t)$





Policy Learning

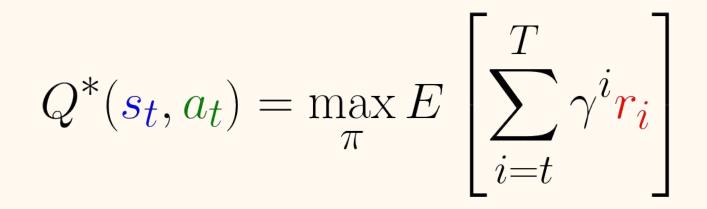
Value Learning

Find $\pi(s)$

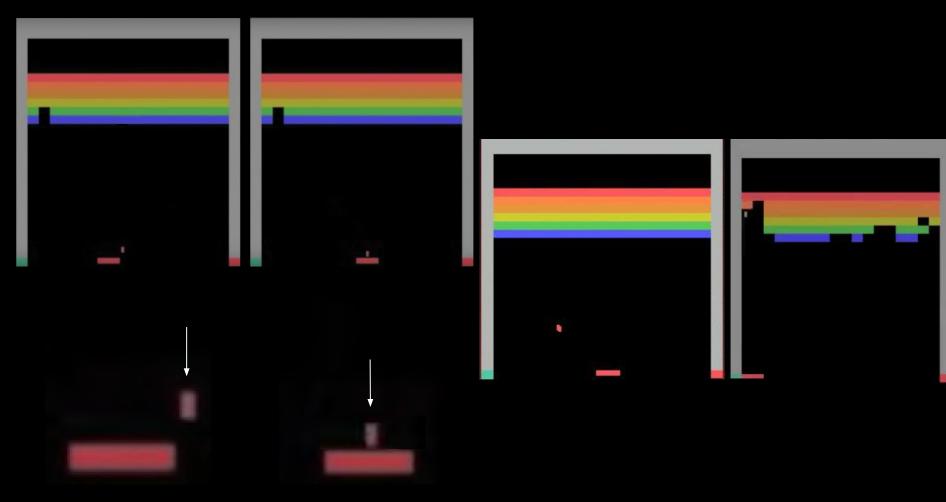
Find Q(s, a)

 $a \sim \pi(s)$

 $a = \arg\max_{a'} Q(s, a')$



maximum expected future rewards starting at state s_i , choosing action a_i , and then following an optimal policy π^*



$$Q^*(\boldsymbol{s_t}, \boldsymbol{a_t}) = E\left[\boldsymbol{r_t} + \gamma \max_{a'} Q^*(\boldsymbol{s_{t+1}}, a')\right]$$

The max future reward for taking action a_t is the current reward plus the next step's max future reward from taking the best next action a'

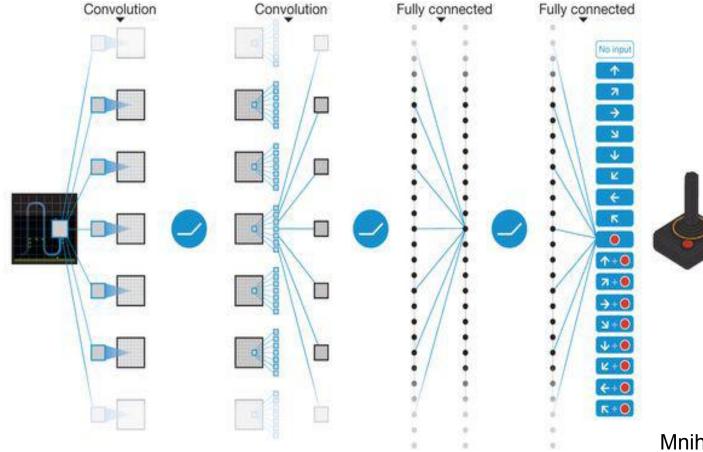
$$\widehat{Q_{j+1}}(\boldsymbol{s_t}, \boldsymbol{a_t}) \leftarrow E\left[\boldsymbol{r_t} + \gamma \max_{a'} \widehat{Q_j}(\boldsymbol{s_{t+1}}, a')\right]$$

But... how large is $Q(\cdot)$?

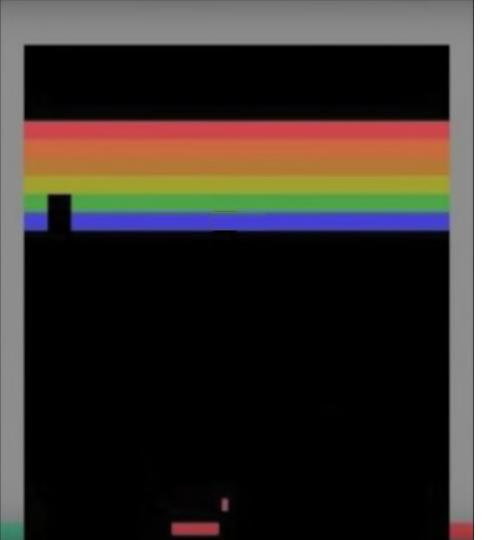
states: ~2⁹⁶•60•60
actions: 3
Q values: ~2¹¹¹

1957 - 2013

ENTER THE DEEP



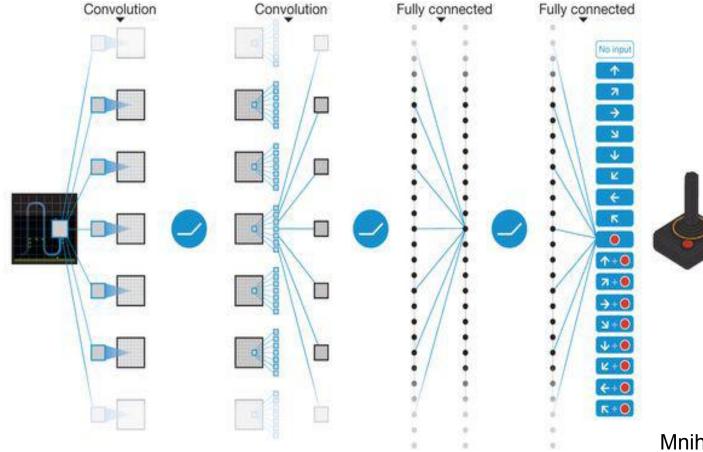
Mnih et al, 2013



Features for Estimating Q

- Whether the paddle can reach the ball
- # remaining blocks
- How are the blocks spatially arranged?

ENTER THE DEEP



Mnih et al, 2013

Define approximate Q* function $\widehat{Q_{\theta}}(\boldsymbol{s}, a | \theta) \sim Q^*(\boldsymbol{s}, a)$

and choose θ to minimize

$$\min_{\theta} \sum_{e \in E} \sum_{t=0}^{T} \left\| \widehat{Q}(s_t, a_t | \theta) - \left(\frac{r_t}{a'} + \gamma \max_{a'} \widehat{Q}(s_{t+1}, a' | \theta) \right) \right\|$$

1: function Q-LEARNING

2: Initialize θ

3: $s = s_0$

7:

8:

9:

- 4: while not bored yet do
- 5: Choose a from some policy $\pi(s)$, and store results r, s_{new}

6: Compute
$$\nabla_{\theta} E_Q = \nabla_{\theta} \left\| \widehat{Q}(s, a|\theta) - \left(r + \gamma \max_{a'} \widehat{Q}(s, a'|\theta_{old}) \right) \right\|$$

$$\theta = \theta - \eta \nabla_{\theta} E_Q$$

$$s = s_{new}$$
 (or s_0 if episode ended)

$$\theta_{old} = \theta$$

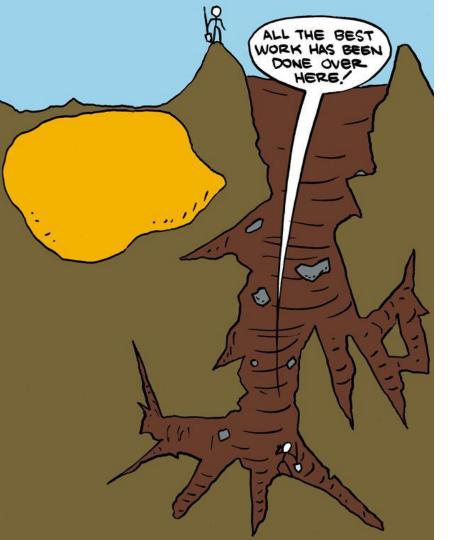
1: function Q-LEARNING

- 2: Initialize θ
- 3: $s = s_0$

5:

7:

- 4: while not bored yet do
 - Choose a from some policy $\pi(s)$, and store results r, s_{new}
- 6: Compute $\nabla_{\theta} E_Q = \nabla_{\theta} \left\| \widehat{Q}(s, a|\theta) \left(r + \gamma \max_{a'} \widehat{Q}(s, a'|\theta_{old}) \right) \right\|$
 - $heta = heta \eta
 abla_{ heta} E_Q$
- 8: $s = s_{new}$ (or s_0 if episode ended)
- 9: $\theta_{old} = \theta$

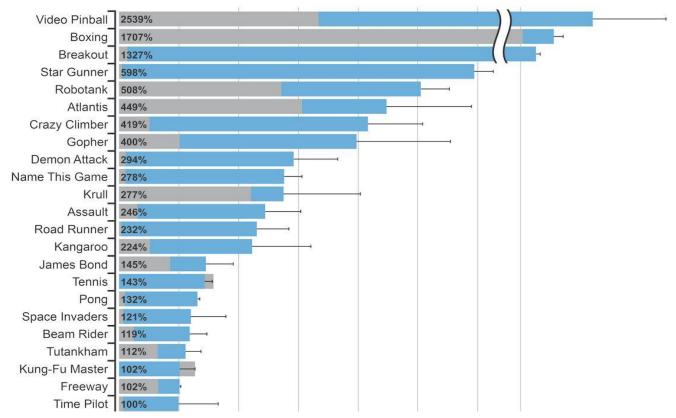


We need to balance

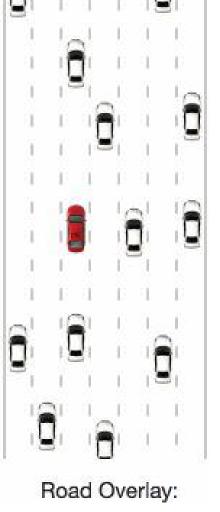
exploration and exploitation

ϵ -greedy exploration

With probability $1 - \epsilon$: Pick $a_{t+1} \sim \operatorname{soft} \max_{a'} \widehat{Q}(s_{t+1}, a')$ With probability ϵ : Pick a_{t+1} at random



% improvement over professional player Mnih et al, 2013



Try it out!

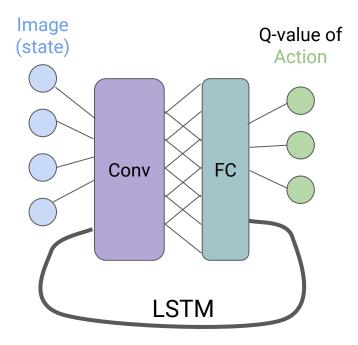
http://selfdrivingcars.mit.edu/deeptraffic/

(Kudos to Lex Fridman & the 6.S094 team!)

The problems with Q-learning

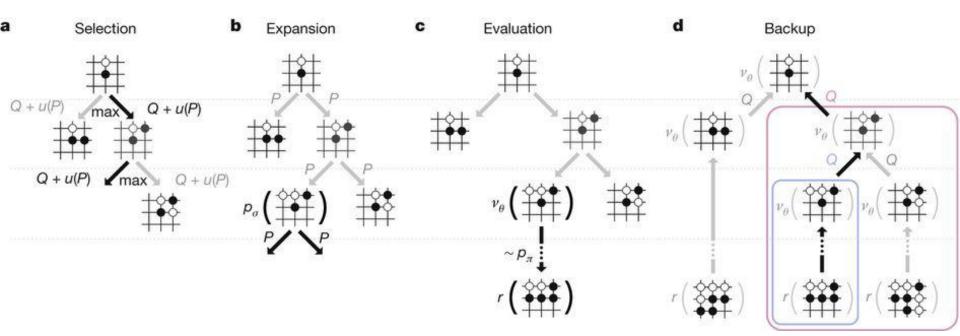
- Restrictive Assumptions
- Handles long horizons poorly
- Requires a simulator

LSTM RNNs!



The problems with Q-learning

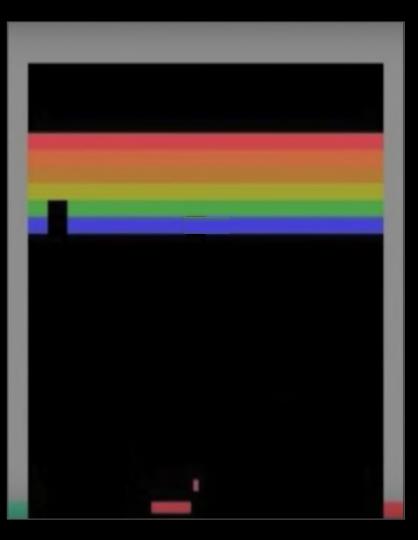
- Restrictive Assumptions
- Handles long horizons poorly
- Requires a simulator

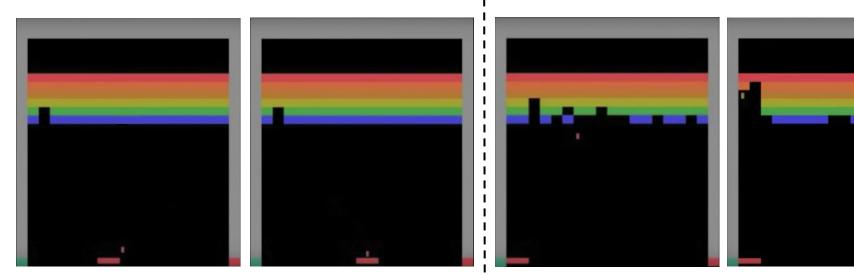


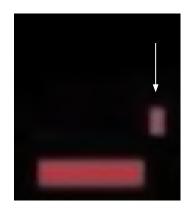
The problems with Q-learning

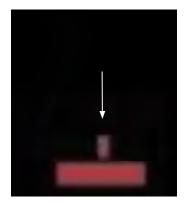
- Restrictive Assumptions
- Handles long horizons poorly
- Requires a simulator

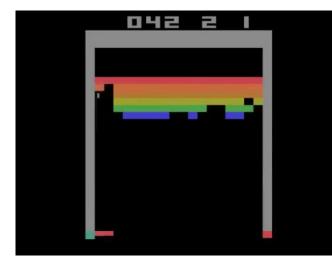
Levine et al, 2016











1: f	function ϵ -GREEDY-Q-LEARNING
2:	Initialize θ
3:	$\epsilon = \text{some tiny number}$
4:	while not bored yet do
5:	$p = \operatorname{randf}(0,1)$
6:	if $p < \epsilon$ then
<mark>7</mark> :	Choose random action a and store results r, s_{new}
8:	else
9:	Choose $a = \arg \max_{a'} Q(s, a')$, and store results r, s_{new}
10:	Compute $\nabla_{\theta} E_Q = \nabla_{\theta} \left\ \widehat{Q}(s, a \theta) - \left(r + \gamma \max_{a'} \widehat{Q}(s, a' \theta_{old}) \right) \right\ $
11:	$\theta = \theta - \eta \nabla_{\theta} E_Q$
12:	$s = s_{new}$ (or s_0 if episode ended)
13:	$ heta_{old}= heta$

